Episodic ataxia type-1 mutations in the hKv1.1 cytoplasmic pore region alter the gating properties of the channel.

نویسندگان

  • M C D'Adamo
  • Z Liu
  • J P Adelman
  • J Maylie
  • M Pessia
چکیده

Episodic ataxia type-1 is a rare human neurological syndrome which occurs during childhood and persists through the whole life of affected patients. Several heterozygous point mutations have been found in the coding sequence of the voltage-gated potassium channel gene hKv1.1 of different affected families. V408A and E325D mutations are located in the cytoplasmic putative pore region of hKv1.1 channels and profoundly alter their gating properties. V408A channels showed increased kinetic rates of activation, deactivation and C-type inactivation. Expression of E325D channels in Xenopus oocytes led to an approximately 13-fold current amplitude reduction and to a 52.4 mV positive shift in the voltage dependence of activation. Moreover, the E325D mutation altered the kinetics of activation, deactivation, C-type inactivation and channel open probability. Heteromeric channels composed of two wild-type and two mutated subunits, linked as dimers, showed gating properties intermediate between channels formed from four normal or four mutated subunits. The results demonstrate that the highly conserved residues Val408 and Glu325 play a pivotal role in several gating processes of a human potassium channel, and suggest a pathogenetic mechanism by which the impairment of the delayed-rectifier function of affected neurons is related to the type and number of mutated subunits which make up the hKv1.1 channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Episodic ataxia mutations in Kv1.1 alter potassium channel function by dominant negative effects or haploinsufficiency.

Subunits of the voltage-gated potassium channel Kv1.1 containing mutations responsible for episodic ataxia (EA), a human inherited neurological disease, were expressed in Xenopus oocytes. Five EA subunits formed functional homomeric channels with lower current amplitudes and altered gating properties compared with wild type. Two EA mutations located in the first cytoplasmic loop, R239S and F249...

متن کامل

Pii: S0306-4522(98)00718-0

Episodic ataxia type 1 is a rare, autosomal dominant neurological disorder caused by missense mutations of the Kv1.1 gene from the Shaker K channel subfamily. To study the functional effects of the disease-causing mutations in a robust K channel background, we introduced seven different episodic ataxia type 1 substitutions into the corresponding, conserved residues of the Shaker K channel. K ch...

متن کامل

Slow Inactivation in Shaker K Channels Is Delayed by Intracellular Tetraethylammonium

After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches--the so called C inactivation--is a constriction of the external mouth of the channel pore that prevents K(+) ion conductio...

متن کامل

A Disease Mutation Causing Episodic Ataxia Type I in the S1 Links Directly to the Voltage Sensor and the Selectivity Filter in Kv Channels.

UNLABELLED The mutation F184C in Kv1.1 leads to development of episodic ataxia type I (EA1). Although the mutation has been said to alter activation kinetics and to lower expression, we show here that the underlying molecular mechanisms may be more complex. Although F184 is positioned in the "peripheral" S1 helix, it occupies a central position in the 3D fold. We show in cut-open oocyte voltage...

متن کامل

Mutations underlying Episodic Ataxia type-1 antagonize Kv1.1 RNA editing

Adenosine-to-inosine RNA editing in transcripts encoding the voltage-gated potassium channel Kv1.1 converts an isoleucine to valine codon for amino acid 400, speeding channel recovery from inactivation. Numerous Kv1.1 mutations have been associated with the human disorder Episodic Ataxia Type-1 (EA1), characterized by stress-induced ataxia, myokymia, and increased prevalence of seizures. Three ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 1998